Producing medium density fibreboard based on bamboo-willow

Dr. Mei Changtong

Nanjing Forestry University

Nanjing China

Nanjing Forestry University College of Materials Science and Engineering

Nanjing Forestry University College of Materials Science and Engineering

- ☐ China has been the largest country in the world for WBP production and exportation.
- ☐ Raw material supply is the big issue for the sustainable development of wood industry in China.
- ☐ Fast-growing tree plantation will be the only solution.

Global WBP production in 2013

- □ 6 years ago, Bamboo-willow was introduced into China.
- ☐ It grows faster than poplar

Bamboo-willow plantation in China

The aim of this study is to study the possibility of using fibers made from bamboo-willow to produce MDF.

Micro-structure and Wettability of bamboo-willow wood

Nanjing Forestry University College of Materials Science and Engineering

Cross-sectional detailed micro-structure of bamboo-willow wood

Nanjing Forestry University College of Materials Science and Engineering

图 3.4 竹柳弦切面。

Tangential section detailed micro-structure of bamboo-willow wood

Nanjing Forestry University College of Materials Science and Engineering

图 3.3 竹柳径切面。

Radial section detailed micro-structure of bamboo-willow wood

Nanjing Forestry University College of Materials Science and Engineering

The relationship between wetting time and water contact angle on bamboo-willow

Processing fibres with different morphology

Temperature settings in refining process:

- 1) Room temperature refining (25 °C)
- 2) Pressurized refining (140 °C)
- 3) Pressurized refining (160 °C)

Nanjing Forestry University College of Materials Science and Engineering

The image of one fibre obtained with FQA

Nanjing Forestry University College of Materials Science and Engineering

Fibre Quality Analyser

Nanjing Forestry University College of Materials Science and Engineering

The relationship between actual length and projective length of the fibre.

L= actual length;

l= projective length

Curl Index= (L/l)-1

The average length, width and curl index of fibres processed in three temperature conditions in refining process

Temperature(°C)	Length (mm)	Width (mm)	Curl index
25	0.42	0.026	0.0488
140	0.33	0.025	0.0488
160	0.3	0.025	0.0524

MDF production and properties measurement

Parameters for board manufacturing:

- □ Target density: 850 kg/m3
- Board thickness: 12mm
- □ UF glue application: 14%
- □ Pressing temperature: 180°C
- □ Pressing time: 360s

The properties of MDF produced with fibres that are prepared in three different temperature conditions in refining process

Temperature(°C)	MOE ^a (MPa)	MOR ^b	IBc	TSd (%)	
		(MPa)	(MPa)		
25	2895.32	34.07	0.56	12.7	
140	2921.02	28.99	0.56	13.1	
160	2495.32	24.77	0.51	14.3	

^aModulus of elasticity1, ^bModulus of rupture, ^cInternal bond, ^dThickness swell

Conclusions

- Bamboo-willow is suitable to be a raw material for MDF production.
- High processing temperature can decrease the length of fibers.
- MDF produced with relatively long fiber has higher mechanical strength.

Future work

- Mixing bamboo-willow with other wood species to produce MDF.
- Using bamboo-willow in MDF industry.
- The possibility of using bamboo-willow in OSB industry.