OHT of poplar round wood – the wood’s resistance to white rot

Waldemar Perdoch, Stanisław Karpiński, Janusz Zawadzki, Bartłomiej Mazela

IPC working Party on Harvesting and Utilization of Poplar and Willow Wood
2nd Conference on Engineered Wood Products based on Poplar/willow Wood
León, Spain, September 8th–10th 2016
Introduction – thermal modification

- Environmental friendly
- No chemicals

- Improves the properties of wood
 - Hygroscopicity,
 - Dimensional stability,
 - Resistance to biotic factors
Chemical changes in wood

- Hemicellulose degradation 160 – 240°C
- Cellulose
 - 250°C decomposition to H_2O, CO and CO_2
 - Reduction of polymerization 2600 – 600
- Lignin
 - 100–180°C softening
- Non-cellulose carbohydrates
 - decomposition to H_2O, CO and CO_2
 - form dextrin and branched polysaccharides
Introduction – OHT modification

Advantages
- Hot oil, as a heating medium
- Oil doesn't penetrate the wood
- Relatively simple apparatus
- Usually conducted at a temperature of 180–220°C
- Even distribution of heat

Disadvantages
- Resins in oil
Aim of the study

Poplar wood

OHT

Limited decay action of the poplar wood
Materials

- Age of trees – 3 years
- Wood Species:
 - Populus maximowiczii
 - Populus trichocarpa
- Wood moisture approx. 20%
- Samples dimension with bark:
 - 230 mm long
 - 50 mm diameter
OHT process

Heating medium – palm oil

Two stages of modification

<table>
<thead>
<tr>
<th>Wood species</th>
<th>Modification time at 100 °C [h]</th>
<th>Modification time at 180 °C [h]</th>
<th>Sample code</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. maximowiczii</td>
<td>24</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>P. maximowiczii</td>
<td>24</td>
<td>48</td>
<td>2</td>
</tr>
<tr>
<td>P. trichocarpa</td>
<td>24</td>
<td>24</td>
<td>3</td>
</tr>
<tr>
<td>P. trichocarpa</td>
<td>24</td>
<td>48</td>
<td>4</td>
</tr>
</tbody>
</table>
Examination

Mycological examination
 Samples dimension: 5x15x40 mm
 Fungi: *Coriolus versicolor*
 Fungi action:
 Time: 8 weeks
 Humidity: 70±5%
 Temperature: 22±1°C

Aging test
 EN84
Results – Change of the mass of poplar rollers subjected to thermal modification

<table>
<thead>
<tr>
<th>Wood species</th>
<th>Modification time at 180 °C</th>
<th>Sample code</th>
<th>Change of the samples’ mass [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>24h</td>
</tr>
<tr>
<td>P. maximowiczii</td>
<td>24</td>
<td>1</td>
<td>65</td>
</tr>
<tr>
<td>P. maximowiczii</td>
<td>48</td>
<td>2</td>
<td>66</td>
</tr>
<tr>
<td>P. trichocarpa</td>
<td>24</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>P. trichocarpa</td>
<td>48</td>
<td>4</td>
<td>100</td>
</tr>
</tbody>
</table>
The table below presents the results of wood mass losses and wood moisture content as a result of the test fungi action. The data includes samples of P. Maximoviczii and P. Trichocarpa subjected to 24-hour modification at 180°C, along with a control group. The table lists the density, mass loss, RSD, and WMC after the test for both non-leaching and leaching conditions.

<table>
<thead>
<tr>
<th>Sample Code</th>
<th>Non leaching</th>
<th>Leaching</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Density [kg/m³]</td>
<td>Mass Loss [%]</td>
</tr>
<tr>
<td>P. Maximoviczii 24h modification 180°C</td>
<td>467</td>
<td>12.11</td>
</tr>
<tr>
<td>Control</td>
<td>341</td>
<td>39.21</td>
</tr>
<tr>
<td>P. Maximoviczii 24h modification 180°C</td>
<td>506</td>
<td>14.74</td>
</tr>
<tr>
<td>Control</td>
<td>329</td>
<td>39.75</td>
</tr>
<tr>
<td>P. Trichocarpa 24h modification 180°C</td>
<td>797</td>
<td>12.42</td>
</tr>
<tr>
<td>Control</td>
<td>413</td>
<td>38.36</td>
</tr>
<tr>
<td>P. Trichocarpa 24h modification 180°C</td>
<td>568</td>
<td>13.68</td>
</tr>
<tr>
<td>Control</td>
<td>422</td>
<td>37.76</td>
</tr>
</tbody>
</table>
1. Thermal modification by OHT method enhanced the resistance of *P. maximowiczii* and *P. trichocarpa* wood to *C. versicolor*.

2. Irrespective of the thermal treatment parameters and differences in mass loss values resulting from modification, the durability of wood of both species increased.

3. The best resistance against *C. versicolor* was observed for *P. trichocarpa* wood modified for 24h (ML 8%).
Thank you for your attention